If false
then the stream will automatically end the writable side when the
readable side ends. Set initially by the allowHalfOpen
constructor option,
which defaults to false
.
This can be changed manually to change the half-open behavior of an existingDuplex
stream instance, but must be changed before the 'end'
event is
emitted.
This property shows the number of characters buffered for writing. The buffer may contain strings whose length after encoding is not yet known. So this number is only an approximation of the number of bytes in the buffer.
net.Socket
has the property that socket.write()
always works. This is to
help users get up and running quickly. The computer cannot always keep up
with the amount of data that is written to a socket. The network connection
simply might be too slow. Node.js will internally queue up the data written to a
socket and send it out over the wire when it is possible.
The consequence of this internal buffering is that memory may grow.
Users who experience large or growing bufferSize
should attempt to
"throttle" the data flows in their program with socket.pause()
and socket.resume()
.
The amount of received bytes.
The amount of bytes sent.
Is true after 'close' has been emitted.
If true
,socket.connect(options[, connectListener])
was
called and has not yet finished. It will stay true
until the socket becomes
connected, then it is set to false
and the 'connect'
event is emitted. Note
that the socket.connect(options[, connectListener])
callback is a listener for the 'connect'
event.
See writable.destroyed
for further details.
Returns error if the stream has been destroyed with an error.
The string representation of the local IP address the remote client is
connecting on. For example, in a server listening on '0.0.0.0'
, if a client
connects on '192.168.1.1'
, the value of socket.localAddress
would be'192.168.1.1'
.
The string representation of the local IP family. 'IPv4'
or 'IPv6'
.
The numeric representation of the local port. For example, 80
or 21
.
Is true
if it is safe to call readable.read()
, which means
the stream has not been destroyed or emitted 'error'
or 'end'
.
Returns whether the stream was destroyed or errored before emitting 'end'
.
Returns whether 'data'
has been emitted.
Getter for the property encoding
of a given Readable
stream. The encoding
property can be set using the readable.setEncoding()
method.
Becomes true
when 'end'
event is emitted.
This property reflects the current state of a Readable
stream as described
in the Three states
section.
Returns the value of highWaterMark
passed when creating this Readable
.
This property contains the number of bytes (or objects) in the queue
ready to be read. The value provides introspection data regarding
the status of the highWaterMark
.
Getter for the property objectMode
of a given Readable
stream.
This property represents the state of the connection as a string.
The string representation of the remote IP address. For example,'74.125.127.100'
or '2001:4860:a005::68'
. Value may be undefined
if
the socket is destroyed (for example, if the client disconnected).
The string representation of the remote IP family. 'IPv4'
or 'IPv6'
.
The numeric representation of the remote port. For example, 80
or 21
.
The socket timeout in milliseconds as set by socket.setTimeout(). It is undefined if a timeout has not been set.
Sets or gets the default captureRejection value for all emitters.
This symbol shall be used to install a listener for only monitoring 'error'
events. Listeners installed using this symbol are called before the regular
'error'
listeners are called.
Installing a listener using this symbol does not change the behavior once an
'error'
event is emitted, therefore the process will still crash if no
regular 'error'
listener is installed.
events.EventEmitter
Returns the bound address
, the address family
name and port
of the
socket as reported by the operating system:{ port: 12346, family: 'IPv4', address: '127.0.0.1' }
Initiate a connection on a given socket.
Possible signatures:
socket.connect(options[, connectListener])
socket.connect(path[, connectListener])
for IPC
connections.socket.connect(port[, host][, connectListener])
for TCP connections.net.Socket
The socket itself.This function is asynchronous. When the connection is established, the 'connect'
event will be emitted. If there is a problem connecting,
instead of a 'connect'
event, an 'error'
event will be emitted with
the error passed to the 'error'
listener.
The last parameter connectListener
, if supplied, will be added as a listener
for the 'connect'
event once.
This function should only be used for reconnecting a socket after'close'
has been emitted or otherwise it may lead to undefined
behavior.
Destroy the stream. Optionally emit an 'error'
event, and emit a 'close'
event (unless emitClose
is set to false
). After this call, the readable
stream will release any internal resources and subsequent calls to push()
will be ignored.
Once destroy()
has been called any further calls will be a no-op and no
further errors except from _destroy()
may be emitted as 'error'
.
Implementors should not override this method, but instead implement readable._destroy()
.
Error which will be passed as payload in 'error'
event
Synchronously calls each of the listeners registered for the event namedeventName
, in the order they were registered, passing the supplied arguments
to each.
Returns true
if the event had listeners, false
otherwise.
const EventEmitter = require('events');
const myEmitter = new EventEmitter();
// First listener
myEmitter.on('event', function firstListener() {
console.log('Helloooo! first listener');
});
// Second listener
myEmitter.on('event', function secondListener(arg1, arg2) {
console.log(`event with parameters ${arg1}, ${arg2} in second listener`);
});
// Third listener
myEmitter.on('event', function thirdListener(...args) {
const parameters = args.join(', ');
console.log(`event with parameters ${parameters} in third listener`);
});
console.log(myEmitter.listeners('event'));
myEmitter.emit('event', 1, 2, 3, 4, 5);
// Prints:
// [
// [Function: firstListener],
// [Function: secondListener],
// [Function: thirdListener]
// ]
// Helloooo! first listener
// event with parameters 1, 2 in second listener
// event with parameters 1, 2, 3, 4, 5 in third listener
Half-closes the socket. i.e., it sends a FIN packet. It is possible the server will still send some data.
See writable.end()
for further details.
Optional callback for when the socket is finished.
The socket itself.
Returns an array listing the events for which the emitter has registered
listeners. The values in the array are strings or Symbol
s.
const EventEmitter = require('events');
const myEE = new EventEmitter();
myEE.on('foo', () => {});
myEE.on('bar', () => {});
const sym = Symbol('symbol');
myEE.on(sym, () => {});
console.log(myEE.eventNames());
// Prints: [ 'foo', 'bar', Symbol(symbol) ]
Returns the current max listener value for the EventEmitter
which is either
set by emitter.setMaxListeners(n)
or defaults to defaultMaxListeners.
The readable.isPaused()
method returns the current operating state of theReadable
. This is used primarily by the mechanism that underlies thereadable.pipe()
method. In most
typical cases, there will be no reason to
use this method directly.
const readable = new stream.Readable();
readable.isPaused(); // === false
readable.pause();
readable.isPaused(); // === true
readable.resume();
readable.isPaused(); // === false
Returns the number of listeners listening to the event named eventName
.
The name of the event being listened for
Returns a copy of the array of listeners for the event named eventName
.
server.on('connection', (stream) => {
console.log('someone connected!');
});
console.log(util.inspect(server.listeners('connection')));
// Prints: [ [Function] ]
Alias for emitter.removeListener()
.
Adds the listener
function to the end of the listeners array for the
event named eventName
. No checks are made to see if the listener
has
already been added. Multiple calls passing the same combination of eventName
and listener
will result in the listener
being added, and called, multiple
times.
server.on('connection', (stream) => {
console.log('someone connected!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
By default, event listeners are invoked in the order they are added. Theemitter.prependListener()
method can be used as an alternative to add the
event listener to the beginning of the listeners array.
const myEE = new EventEmitter();
myEE.on('foo', () => console.log('a'));
myEE.prependListener('foo', () => console.log('b'));
myEE.emit('foo');
// Prints:
// b
// a
Adds a one-timelistener
function for the event named eventName
. The
next time eventName
is triggered, this listener is removed and then invoked.
server.once('connection', (stream) => {
console.log('Ah, we have our first user!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
By default, event listeners are invoked in the order they are added. Theemitter.prependOnceListener()
method can be used as an alternative to add the
event listener to the beginning of the listeners array.
const myEE = new EventEmitter();
myEE.once('foo', () => console.log('a'));
myEE.prependOnceListener('foo', () => console.log('b'));
myEE.emit('foo');
// Prints:
// b
// a
Pauses the reading of data. That is, 'data'
events will not be emitted.
Useful to throttle back an upload.
The socket itself.
Adds the listener
function to the beginning of the listeners array for the
event named eventName
. No checks are made to see if the listener
has
already been added. Multiple calls passing the same combination of eventName
and listener
will result in the listener
being added, and called, multiple
times.
server.prependListener('connection', (stream) => {
console.log('someone connected!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
Adds a one-timelistener
function for the event named eventName
to the beginning of the listeners array. The next time eventName
is triggered, this
listener is removed, and then invoked.
server.prependOnceListener('connection', (stream) => {
console.log('Ah, we have our first user!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
Returns a copy of the array of listeners for the event named eventName
,
including any wrappers (such as those created by .once()
).
const emitter = new EventEmitter();
emitter.once('log', () => console.log('log once'));
// Returns a new Array with a function `onceWrapper` which has a property
// `listener` which contains the original listener bound above
const listeners = emitter.rawListeners('log');
const logFnWrapper = listeners[0];
// Logs "log once" to the console and does not unbind the `once` event
logFnWrapper.listener();
// Logs "log once" to the console and removes the listener
logFnWrapper();
emitter.on('log', () => console.log('log persistently'));
// Will return a new Array with a single function bound by `.on()` above
const newListeners = emitter.rawListeners('log');
// Logs "log persistently" twice
newListeners[0]();
emitter.emit('log');
The readable.read()
method reads data out of the internal buffer and
returns it. If no data is available to be read, null
is returned. By default,
the data is returned as a Buffer
object unless an encoding has been
specified using the readable.setEncoding()
method or the stream is operating
in object mode.
The optional size
argument specifies a specific number of bytes to read. Ifsize
bytes are not available to be read, null
will be returned _unless_the stream has ended, in which
case all of the data remaining in the internal
buffer will be returned.
If the size
argument is not specified, all of the data contained in the
internal buffer will be returned.
The size
argument must be less than or equal to 1 GiB.
The readable.read()
method should only be called on Readable
streams
operating in paused mode. In flowing mode, readable.read()
is called
automatically until the internal buffer is fully drained.
const readable = getReadableStreamSomehow();
// 'readable' may be triggered multiple times as data is buffered in
readable.on('readable', () => {
let chunk;
console.log('Stream is readable (new data received in buffer)');
// Use a loop to make sure we read all currently available data
while (null !== (chunk = readable.read())) {
console.log(`Read ${chunk.length} bytes of data...`);
}
});
// 'end' will be triggered once when there is no more data available
readable.on('end', () => {
console.log('Reached end of stream.');
});
Each call to readable.read()
returns a chunk of data, or null
. The chunks
are not concatenated. A while
loop is necessary to consume all data
currently in the buffer. When reading a large file .read()
may return null
,
having consumed all buffered content so far, but there is still more data to
come not yet buffered. In this case a new 'readable'
event will be emitted
when there is more data in the buffer. Finally the 'end'
event will be
emitted when there is no more data to come.
Therefore to read a file's whole contents from a readable
, it is necessary
to collect chunks across multiple 'readable'
events:
const chunks = [];
readable.on('readable', () => {
let chunk;
while (null !== (chunk = readable.read())) {
chunks.push(chunk);
}
});
readable.on('end', () => {
const content = chunks.join('');
});
A Readable
stream in object mode will always return a single item from
a call to readable.read(size)
, regardless of the value of thesize
argument.
If the readable.read()
method returns a chunk of data, a 'data'
event will
also be emitted.
Calling read after the 'end'
event has
been emitted will return null
. No runtime error will be raised.
Optional argument to specify how much data to read.
Opposite of unref()
, calling ref()
on a previously unref
ed socket will not let the program exit if it's the only socket left (the default behavior).
If the socket is ref
ed calling ref
again will have no effect.
The socket itself.
Removes all listeners, or those of the specified eventName
.
It is bad practice to remove listeners added elsewhere in the code,
particularly when the EventEmitter
instance was created by some other
component or module (e.g. sockets or file streams).
Returns a reference to the EventEmitter
, so that calls can be chained.
Removes the specified listener
from the listener array for the event namedeventName
.
const callback = (stream) => {
console.log('someone connected!');
};
server.on('connection', callback);
// ...
server.removeListener('connection', callback);
removeListener()
will remove, at most, one instance of a listener from the
listener array. If any single listener has been added multiple times to the
listener array for the specified eventName
, then removeListener()
must be
called multiple times to remove each instance.
Once an event is emitted, all listeners attached to it at the
time of emitting are called in order. This implies that anyremoveListener()
or removeAllListeners()
calls after emitting and before the last listener finishes execution
will not remove them fromemit()
in progress. Subsequent events behave as expected.
const myEmitter = new MyEmitter();
const callbackA = () => {
console.log('A');
myEmitter.removeListener('event', callbackB);
};
const callbackB = () => {
console.log('B');
};
myEmitter.on('event', callbackA);
myEmitter.on('event', callbackB);
// callbackA removes listener callbackB but it will still be called.
// Internal listener array at time of emit [callbackA, callbackB]
myEmitter.emit('event');
// Prints:
// A
// B
// callbackB is now removed.
// Internal listener array [callbackA]
myEmitter.emit('event');
// Prints:
// A
Because listeners are managed using an internal array, calling this will
change the position indices of any listener registered after the listener
being removed. This will not impact the order in which listeners are called,
but it means that any copies of the listener array as returned by
the emitter.listeners()
method will need to be recreated.
When a single function has been added as a handler multiple times for a single
event (as in the example below), removeListener()
will remove the most
recently added instance. In the example the once('ping')
listener is removed:
const ee = new EventEmitter();
function pong() {
console.log('pong');
}
ee.on('ping', pong);
ee.once('ping', pong);
ee.removeListener('ping', pong);
ee.emit('ping');
ee.emit('ping');
Returns a reference to the EventEmitter
, so that calls can be chained.
Close the TCP connection by sending an RST packet and destroy the stream.
If this TCP socket is in connecting status, it will send an RST packet
and destroy this TCP socket once it is connected. Otherwise, it will call
socket.destroy
with an ERR_SOCKET_CLOSED
Error. If this is not a TCP socket
(for example, a pipe), calling this method will immediately throw
an ERR_INVALID_HANDLE_TYPE
Error.
The socket itself.
Resumes reading after a call to socket.pause()
.
The socket itself.
Set the encoding for the socket as a Readable Stream
. See readable.setEncoding()
for more information.
The socket itself.
Enable/disable keep-alive functionality, and optionally set the initial delay before the first keepalive probe is sent on an idle socket.
Set initialDelay
(in milliseconds) to set the delay between the last
data packet received and the first keepalive probe. Setting 0
forinitialDelay
will leave the value unchanged from the default
(or previous) setting.
Enabling the keep-alive functionality will set the following socket options:
SO_KEEPALIVE=1
TCP_KEEPIDLE=initialDelay
TCP_KEEPCNT=10
TCP_KEEPINTVL=1
The socket itself.
By default EventEmitter
s will print a warning if more than 10
listeners are
added for a particular event. This is a useful default that helps finding
memory leaks. The emitter.setMaxListeners()
method allows the limit to be
modified for this specific EventEmitter
instance. The value can be set toInfinity
(or 0
) to indicate an unlimited number of listeners.
Returns a reference to the EventEmitter
, so that calls can be chained.
Enable/disable the use of Nagle's algorithm.
When a TCP connection is created, it will have Nagle's algorithm enabled.
Nagle's algorithm delays data before it is sent via the network. It attempts to optimize throughput at the expense of latency.
Passing true
for noDelay
or not passing an argument will disable Nagle's
algorithm for the socket. Passing false
for noDelay
will enable Nagle's
algorithm.
The socket itself.
Sets the socket to timeout after timeout
milliseconds of inactivity on
the socket. By default net.Socket
do not have a timeout.
When an idle timeout is triggered the socket will receive a 'timeout'
event but the connection will not be severed. The user must manually call socket.end()
or socket.destroy()
to
end the connection.
socket.setTimeout(3000);
socket.on('timeout', () => {
console.log('socket timeout');
socket.end();
});
If timeout
is 0, then the existing idle timeout is disabled.
The optional callback
parameter will be added as a one-time listener for the 'timeout'
event.
The socket itself.
The readable.unpipe()
method detaches a Writable
stream previously attached
using the pipe method.
If the destination
is not specified, then all pipes are detached.
If the destination
is specified, but no pipe is set up for it, then
the method does nothing.
const fs = require('fs');
const readable = getReadableStreamSomehow();
const writable = fs.createWriteStream('file.txt');
// All the data from readable goes into 'file.txt',
// but only for the first second.
readable.pipe(writable);
setTimeout(() => {
console.log('Stop writing to file.txt.');
readable.unpipe(writable);
console.log('Manually close the file stream.');
writable.end();
}, 1000);
Optional specific stream to unpipe
Calling unref()
on a socket will allow the program to exit if this is the only
active socket in the event system. If the socket is already unref
ed callingunref()
again will have no effect.
The socket itself.
Passing chunk
as null
signals the end of the stream (EOF) and behaves the
same as readable.push(null)
, after which no more data can be written. The EOF
signal is put at the end of the buffer and any buffered data will still be
flushed.
The readable.unshift()
method pushes a chunk of data back into the internal
buffer. This is useful in certain situations where a stream is being consumed by
code that needs to "un-consume" some amount of data that it has optimistically
pulled out of the source, so that the data can be passed on to some other party.
The stream.unshift(chunk)
method cannot be called after the 'end'
event
has been emitted or a runtime error will be thrown.
Developers using stream.unshift()
often should consider switching to
use of a Transform
stream instead. See the API for stream implementers
section for more information.
// Pull off a header delimited by \n\n.
// Use unshift() if we get too much.
// Call the callback with (error, header, stream).
const { StringDecoder } = require('string_decoder');
function parseHeader(stream, callback) {
stream.on('error', callback);
stream.on('readable', onReadable);
const decoder = new StringDecoder('utf8');
let header = '';
function onReadable() {
let chunk;
while (null !== (chunk = stream.read())) {
const str = decoder.write(chunk);
if (str.includes('\n\n')) {
// Found the header boundary.
const split = str.split(/\n\n/);
header += split.shift();
const remaining = split.join('\n\n');
const buf = Buffer.from(remaining, 'utf8');
stream.removeListener('error', callback);
// Remove the 'readable' listener before unshifting.
stream.removeListener('readable', onReadable);
if (buf.length)
stream.unshift(buf);
// Now the body of the message can be read from the stream.
callback(null, header, stream);
return;
}
// Still reading the header.
header += str;
}
}
}
Unlike push, stream.unshift(chunk)
will not
end the reading process by resetting the internal reading state of the stream.
This can cause unexpected results if readable.unshift()
is called during a
read (i.e. from within a _read implementation on a
custom stream). Following the call to readable.unshift()
with an immediate push will reset the reading state appropriately,
however it is best to simply avoid calling readable.unshift()
while in the
process of performing a read.
Chunk of data to unshift onto the read queue. For streams not operating in object mode, chunk
must be a string, Buffer
, Uint8Array
or null
. For object mode
streams, chunk
may be any JavaScript value.
Encoding of string chunks. Must be a valid Buffer
encoding, such as 'utf8'
or 'ascii'
.
Prior to Node.js 0.10, streams did not implement the entire stream
module API
as it is currently defined. (See Compatibility
for more information.)
When using an older Node.js library that emits 'data'
events and has a pause method that is advisory only, thereadable.wrap()
method can be used to create a Readable
stream that uses
the old stream as its data source.
It will rarely be necessary to use readable.wrap()
but the method has been
provided as a convenience for interacting with older Node.js applications and
libraries.
const { OldReader } = require('./old-api-module.js');
const { Readable } = require('stream');
const oreader = new OldReader();
const myReader = new Readable().wrap(oreader);
myReader.on('readable', () => {
myReader.read(); // etc.
});
An "old style" readable stream
Sends data on the socket. The second parameter specifies the encoding in the case of a string. It defaults to UTF8 encoding.
Returns true
if the entire data was flushed successfully to the kernel
buffer. Returns false
if all or part of the data was queued in user memory.'drain'
will be emitted when the buffer is again free.
The optional callback
parameter will be executed when the data is finally
written out, which may not be immediately.
See Writable
stream write()
method for more
information.
A utility method for creating duplex streams.
Stream
converts writable stream into writable Duplex
and readable stream
to Duplex
.Blob
converts into readable Duplex
.string
converts into readable Duplex
.ArrayBuffer
converts into readable Duplex
.AsyncIterable
converts into a readable Duplex
. Cannot yield null
.AsyncGeneratorFunction
converts into a readable/writable transform
Duplex
. Must take a source AsyncIterable
as first parameter. Cannot yield
null
.AsyncFunction
converts into a writable Duplex
. Must return
either null
or undefined
Object ({ writable, readable })
converts readable
and
writable
into Stream
and then combines them into Duplex
where the
Duplex
will write to the writable
and read from the readable
.Promise
converts into readable Duplex
. Value null
is ignored.A utility method for creating a Readable
from a web ReadableStream
.
Returns a copy of the array of listeners for the event named eventName
.
For EventEmitter
s this behaves exactly the same as calling .listeners
on
the emitter.
For EventTarget
s this is the only way to get the event listeners for the
event target. This is useful for debugging and diagnostic purposes.
const { getEventListeners, EventEmitter } = require('events');
{
const ee = new EventEmitter();
const listener = () => console.log('Events are fun');
ee.on('foo', listener);
getEventListeners(ee, 'foo'); // [listener]
}
{
const et = new EventTarget();
const listener = () => console.log('Events are fun');
et.addEventListener('foo', listener);
getEventListeners(et, 'foo'); // [listener]
}
Returns whether the stream has been read from or cancelled.
A class method that returns the number of listeners for the given eventName
registered on the given emitter
.
const { EventEmitter, listenerCount } = require('events');
const myEmitter = new EventEmitter();
myEmitter.on('event', () => {});
myEmitter.on('event', () => {});
console.log(listenerCount(myEmitter, 'event'));
// Prints: 2
The emitter to query
The event name
```js const { on, EventEmitter } = require('events');
(async () => { const ee = new EventEmitter();
// Emit later on process.nextTick(() => { ee.emit('foo', 'bar'); ee.emit('foo', 42); });
for await (const event of on(ee, 'foo')) { // The execution of this inner block is synchronous and it // processes one event at a time (even with await). Do not use // if concurrent execution is required. console.log(event); // prints ['bar'] [42] } // Unreachable here })();
Returns an `AsyncIterator` that iterates `eventName` events. It will throw
if the `EventEmitter` emits `'error'`. It removes all listeners when
exiting the loop. The `value` returned by each iteration is an array
composed of the emitted event arguments.
An `AbortSignal` can be used to cancel waiting on events:
```js
const { on, EventEmitter } = require('events');
const ac = new AbortController();
(async () => {
const ee = new EventEmitter();
// Emit later on
process.nextTick(() => {
ee.emit('foo', 'bar');
ee.emit('foo', 42);
});
for await (const event of on(ee, 'foo', { signal: ac.signal })) {
// The execution of this inner block is synchronous and it
// processes one event at a time (even with await). Do not use
// if concurrent execution is required.
console.log(event); // prints ['bar'] [42]
}
// Unreachable here
})();
process.nextTick(() => ac.abort());
The name of the event being listened for
that iterates eventName
events emitted by the emitter
Creates a Promise
that is fulfilled when the EventEmitter
emits the given
event or that is rejected if the EventEmitter
emits 'error'
while waiting.
The Promise
will resolve with an array of all the arguments emitted to the
given event.
This method is intentionally generic and works with the web platform EventTarget interface, which has no special'error'
event
semantics and does not listen to the 'error'
event.
const { once, EventEmitter } = require('events');
async function run() {
const ee = new EventEmitter();
process.nextTick(() => {
ee.emit('myevent', 42);
});
const [value] = await once(ee, 'myevent');
console.log(value);
const err = new Error('kaboom');
process.nextTick(() => {
ee.emit('error', err);
});
try {
await once(ee, 'myevent');
} catch (err) {
console.log('error happened', err);
}
}
run();
The special handling of the 'error'
event is only used when events.once()
is used to wait for another event. If events.once()
is used to wait for the
'error'
event itself, then it is treated as any other kind of event without
special handling:
const { EventEmitter, once } = require('events');
const ee = new EventEmitter();
once(ee, 'error')
.then(([err]) => console.log('ok', err.message))
.catch((err) => console.log('error', err.message));
ee.emit('error', new Error('boom'));
// Prints: ok boom
An AbortSignal
can be used to cancel waiting for the event:
const { EventEmitter, once } = require('events');
const ee = new EventEmitter();
const ac = new AbortController();
async function foo(emitter, event, signal) {
try {
await once(emitter, event, { signal });
console.log('event emitted!');
} catch (error) {
if (error.name === 'AbortError') {
console.error('Waiting for the event was canceled!');
} else {
console.error('There was an error', error.message);
}
}
}
foo(ee, 'foo', ac.signal);
ac.abort(); // Abort waiting for the event
ee.emit('foo'); // Prints: Waiting for the event was canceled!
```js const { setMaxListeners, EventEmitter } = require('events');
const target = new EventTarget(); const emitter = new EventEmitter();
setMaxListeners(5, target, emitter); ```
A non-negative number. The maximum number of listeners per EventTarget
event.
A utility method for creating a web ReadableStream
from a Readable
.
Generated using TypeDoc
This class is an abstraction of a TCP socket or a streaming
IPC
endpoint (uses named pipes on Windows, and Unix domain sockets otherwise). It is also anEventEmitter
.A
net.Socket
can be created by the user and used directly to interact with a server. For example, it is returned by {@link createConnection}, so the user can use it to talk to the server.It can also be created by Node.js and passed to the user when a connection is received. For example, it is passed to the listeners of a
'connection'
event emitted on a {@link Server}, so the user can use it to interact with the client.v0.3.4